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ABBREVIATIONS

The abbreviations shown below are used in this report.

AADT Annual Average Daily Traffic

ADT Average Daily Traffic

AASHTO American Association of State Highway and Transportation Officials
AlIC Akaike Information Criterion
ANOVA  Analysis of Variance

BIC Bayesian Information Criterion
CEVMS  Commercial Electronic Variable Message Signs
CG Control Group

DF Degrees of Freedom

EB Empirical Bayes

EBB Electronic Billboard

FHWA Federal Highway Administration
HSIS Highway Safety Information System
HSM Highway Safety Manual

LCD Liquid Crystal Display

LED Light-Emitting Diode

MS Mean of Sum of Squares

MSE Error Mean Square

MST Treatment Mean Square

RTM Regression to the Mean

SAR Spatial Autoregressive Model

SEM Spatial Error Model

SFI Signage Foundation, Inc.

SPF Safety Performance Function

SS Sum of Squares

SSE Sum of Squares for Error

SST Total Sum of Squares

TTI Texas A&M Transportation Institute
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EXECUTIVE SUMMARY

The use of digital on-premise signs, which are typically business-related signs that have the
ability to change the displayed message, has increased significantly in recent years. On-premise
digital signs are located on the same property as the businesses they promote, and some part —
or a significant part in some cases — of the sign contains a digital display that can be
programmed to change the message at pre-set intervals. Because the use of these signs has
increased, jurisdictions have used local sign codes or ordinances to regulate the manner in which
digital messages are displayed. Jurisdictions typically justify these regulations by citing traffic
safety impacts. However, no comprehensive and scientifically based research efforts have
evaluated the relationship between on-premise digital signs and traffic safety.

In this study, researchers collected large amounts of sign and crash data in order to conduct a
robust statistical analysis of the safety impacts of on-premise digital signs. The statistical tools
used the latest safety analysis theory developed for analyzing the impacts of highway safety
improvements. The research team acquired the crash data from the Highway Safety Information
System, which is a comprehensive database of crash records from several states. One of the
advantages of these data is that they also include information about roadway characteristics, such
as the number of lanes, speed limit, and other factors. The research team then acquired
information about the location of on-premise digital signs from two sign manufacturing
companies. Through significant effort by the researchers, these two datasets were merged into a
single dataset that represented potential study locations in California, North Carolina, Ohio, and
Washington. Of the initial set of over 3,000 possible sites, the research team was able to identify
135 sign locations that could be used for the safety analysis. Potential sites were eliminated from
consideration due to any of the following factors:

e The sign location was not on a roadway that was included in the crash dataset; only major
roads were represented in the crash data.

e The sign location provided by a sign manufacturing company could not be verified
through online digital images of the location.

e Only signs installed in calendar years 2006 or 2007 could be included in order to have
adequate amounts of crash data before and after the sign was installed.

The research team then used the empirical Bayes method to perform a before-after statistical
analysis of the safety impacts of the on-premise digital signs. In a before-after study, the safety
impact of a treatment (in this case, the installation of an on-premise digital sign) is defined by the
change in crashes between the periods before and after the treatment was installed. However,
simply comparing the crash frequencies (known as a naive before-after analysis) is not adequate
to account for factors such as regression to the mean (a statistical concept that explains why after
data can be closer to the mean value than the before data) and to provide a means of controlling
for external factors that can also cause a difference in crash frequencies. The empirical Bayes
method represents the recommended procedure for evaluating the impacts of safety treatments
because it overcomes the deficiencies of the naive method. The safety impacts are represented by
the safety index, which is indicated by the symbol 6. In simple terms, the safety index represents
a ratio of safety in the after period compared to safety in the before period, although it is not as
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simple as dividing the crashes in the after period by the crashes in the before period. A safety
index greater than 1.0 indicates an increase in crashes in the after period, and a value less than
1.0 indicates a reduction in crashes in the after period. However, because of the variability in the
crash data, the analysis must have statistical validity. Statistical variability is established by
defining the 95 percent confidence interval for the safety index, which is based on factors such as
sample size and the variability of the data. If the 95 percent confidence interval includes the
value of 1.0, then there is a 95 percent chance that there is no statistically significant change in
crashes between the before and after periods.

The results of the statistical analysis are presented in Figure 1. This figure shows that the safety
index for all of the states was 1.0 with a 95 percent confidence interval that ranged from 0.93 to
1.07. This indicates that, for the 135 sites included in the analysis, there was no statistically
significant change in crashes due to the installation of on-premise digital signs. The same can
also be said about the results for each of the four states on an individual basis because the
confidence interval for safety index for each state includes 1.0. The larger confidence intervals
for some of the states are due to greater variability in the data and/or smaller sample sizes. The
researchers also analyzed single-vehicle and multi-vehicle crashes and found the same result of
no statistically significant change in crashes. Finally, the researchers performed an analysis of
variance for the sign factors of color, size, and type of business and found no statistically
significant differences in the mean safety index values for individual factors.
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Figure 1. Summary of study results
The results of this study provide scientifically based data that indicate that the installation of

digital on-premise signs does not lead to a statistically significant increase in crashes on major
roads.
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CHAPTER 1:
INTRODUCTION

For many generations, most signs — including both traffic and business signs — were static.
They displayed only one message that did not change with time. Advances in information
display technologies in recent years have led to an increase in the use of many types of digital
signs, particularly in the area of on-premise and off-premise business signs. On-premise digital
signs provide the ability to communicate a wide variety of messages and to change the manner in
which the message is presented over time. As such, these digital signs represent a significant
advancement in communication technologies and the ability to deliver valuable marketing
information to potential customers. However, some groups have raised questions related to the
traffic safety aspects of business signs that change messages on a frequent basis. The traffic
safety concerns are often related to issues of potential driver distraction from the roadway due to
the dynamic nature of these signs. These safety concerns are sometimes addressed through local
regulation of these types of signs, which may prohibit or limit the use of on-premise digital signs.
These regulations tend to be developed at the local level and do not have a significant level of
scientific, nationally based research supporting the regulations.

The traffic safety concerns associated with on-premise digital signs have existed for some time,
but there has been little research, particularly on a national level, that directly addresses the
safety impacts of on-premise digital signs. In part, this is due to the fact that the use of such signs
has grown only in the last 5-10 years. The research described in this report was conducted to
provide a scientifically based, national analysis of on-premise digital signs so that the traffic
safety impacts of such signs can be better understood.

RESEARCH APPROACH

The basic research method used in this study is a before-after statistical analysis of the change in
traffic crashes at locations where digital signs were installed. The research team used digital sign
installation information provided by sign manufacturers to identify locations in selected states
where digital signs had been installed in the 2006-2007 time frame (this time frame was selected
to provide adequate numbers of crashes in both the before and after periods). The analysis
locations were limited to California, North Carolina, Ohio, and Washington because these states
are part of the Federal Highway Administration (FHWA) Highway Safety Information System
(HSIS). The HSIS is a database of crash records that includes detailed information about the
roadway and crashes, including such factors as the number of lanes, the speed limit, crash
severity, and other factors. The researchers then mapped the sign sites to the crash datasets to
identify locations with crashes. These locations were then analyzed to compare the crashes
before installation of the digital sign to the crashes after installation of the sign using statistical
analysis procedures.

DESCRIPTION OF A DIGITAL SIGN

For the purposes of this study, a digital sign is defined as a sign that uses an electrical display,
such as a liquid crystal display (LCD) or light-emitting diode (LED), to provide changeable



messages or graphics. There are several types of digital signs, including digital billboards, indoor
video advertisements, and street-level advertisements (such as LED signs on bus shelters). For
this study, the researchers focused only on on-premise digital signs, which are signs located on
the same property as the business with which they are associated. The research effort did not
include or address off-premise signs or billboards.

RESEARCH ACTIVITIES AND REPORT ORGANIZATION

There were five major activities associated with this research effort. The study began by
reviewing and evaluating previous research on the safety aspects of digital signs and the
statistical methods that other researchers have used to evaluate the safety aspects of signs.
Chapter 2 describes the results of the review of background information. The researchers then
began to collect information related to digital signs and crash data in the selected states. The sign
information included the location and date of installation, and the crash data included the
location and date. The researchers then devoted extensive effort to matching the locations and
dates of the signs and crash datasets. Chapter 3 describes the sign and crash data and how the
two datasets were merged together. Once this was accomplished, the next step was to develop a
valid and scientifically based statistical analysis procedure to determine if there were any
statistically significant changes in crashes after installation of digital signs. Chapter 4 describes
the development of a statistical methodology, including a comparison of the advantages of the
different options for conducting the statistical analysis. Finally, the research team used the results
of the statistical analysis to define the key study findings, which are described in Chapter 5.
Chapter 6 presents the conclusions and recommendations for the research study.



CHAPTER 2:
BACKGROUND INFORMATION

This chapter provides a review of the literature related to on-premise digital signs and their
impacts on traffic safety. The review also includes a summary of statistical methods that can be
used for evaluating the safety effects for these types of signs. Although the majority of the work
has been related to off-premise digital signs, key studies associated with off-premise signs are
nonetheless briefly discussed here. It should be pointed out that compared to other types of
roadway-related operational and design features, such as access point density on urban arterials
or on-street parking designs, the number of documents that are related to either on- or off-
premise signs is relatively small.

On-premise signs are signs that are located on the same property as the activity described in the
sign, while off-premise signs are located away from the activity identified in the sign. Off-
premise signs are also known as third-party signs or outdoor advertising, and the most common
example is a billboard. In general, off-premise signs have a larger visible area, which is
attributed to the fact that these signs usually have greater surface areas and have higher mounting
heights than on-premise signs. Furthermore, off-premise signs have a larger viewership because
they are usually located adjacent to freeways and major highways with higher traffic volume. On
the other hand, on-premise signs are installed on private property where a company conducts its
business, and most are located along urban streets or local roadways. According to The Signage
Sourcebook (U.S. Small Business Administration, 2003), the viewing opportunities for outdoor
advertising (typically 333,350 cars per day) are much greater than those for an on-premise sign
(30,000 cars per day).

The literature review is divided into two sections. The first section summarizes studies related to
on-premise digital signs. The second section presents the summary of two key studies associated
with off-premise digital signs.

ON-PREMISE DIGITAL SIGNS

This section describes the characteristics of the studies that have examined the relationship
between safety and on-premise digital signs. To the knowledge of the authors, only two studies
have investigated this relationship. It should be pointed out that the safety relationships identified
in these research documents were not based on crash data but more on opinions and hypotheses,
which limits their value as a direct measure of on-premise sign safety. The first study was
conducted by Mace (2001). This author performed a literature review and listed two hypotheses
about how on-premise signs can influence crash risk. The first hypothesis states that on-premise
business signs distract drivers’ attention from their primary driving tasks, resulting in higher
crash risks. The second hypothesis asserts that on-premise business signs may mask the visibility
of regulatory and warning road signs, which also can negatively influence crash risk.

On the other hand, Mace (2001) noted positive effects associated with commercial signs. He
reported that commercial signs could reduce unnecessary traffic exposure by providing adequate
navigation information for drivers, such as providing restaurant information for hungry drivers.



However, only measuring the frequency and duration of drivers’ distraction may not represent
the safety impacts of on-premise signs because a study published earlier showed that half of the
objects that drivers see are not related to driving tasks (Hughes and Cole, 1986). In other words,
besides on-premise signs, other roadside features may also distract drivers. The possible solution
to minimize the negative effects of an on-premise sign, but still keep its positive effects, is to
separate the sign’s content to primary (navigation) and secondary (commercial) information.

Although, in the past, on-premise signs and off-premise signs were treated as distinct signage,
they are becoming more homogeneous in terms of characteristics. In the second study, Wachtel
(2009) mentioned that more roadside businesses, especially those with multiple users (e.g.,
shopping centers, auto malls, sports complexes, and entertainment places), now install larger-
sized on-premise digital signs because of the lower cost and better performance of the LED
display. Wachtel indicated that the largest digital advertising sign in the world is an on-premise
sign in New York City. This sign is 90 ft tall and 65 ft wide, and is mounted on a 165-ft-tall steel
post on the roof of the warehouse. The visible distance is over 2 miles. Wachtel also suggested
that some on-premise signs affect traffic safety more than some off-premise digital signs because
the locations and elevations of on-premise signs might be closer to the road users. In addition,
the angles of on-premise signs may be out of the cone of vision and require extreme head
movements to read.

In summary, these two studies showed more research is needed for understanding the
relationship between on-premise digital signs and crash risk.

OFF-PREMISE DIGITAL SIGNS

This section is divided into two parts. The first part describes two key studies that have examined
the safety effects of off-premise digital signs. The second part covers methodologies that have
been used for estimating these effects.

Safety Effects

There are two reports that provide reviews of the findings, methods, and key factors related to
the safety effects of off-premise digital signs. The first systematic study related to the impacts of
off-premise signs was conducted 11 years ago by Farbry et al. (2001). Their study reviewed
earlier reports and analyses (including those about electronic billboards and tri-vision signs) and
provided the foundation for the second study written by Molino et al. (2009). In the second
report, Molino et al. (2009) reviewed 32 related studies, which included those initially reviewed
by Farbry et al. (2001), and noted that the majority of studies reported a negative effect between
digital billboards and traffic safety. Although the number of studies that showed harmful impacts
is five times more than the number of studies that showed no harmful impacts, the authors
suggested that this ratio may not be strong evidence to prove the negative effects linked to
electronic billboards (EBBs). The individual studies considered by these researchers had very
different study methods and statistical powers, which can have a significant effect on the quality
and results of the research.



Another important finding in the Molino et al. (2009) report is that drivers usually have spare
attention capacities, and they can be distracted from their driving tasks by roadside objects (such
as EBBs). However, these distractions may be riskier when the driving demands increase, such
as in fixed hazard areas (e.g., intersections, interchanges, and sharp curves), in transient risky
conditions (e.g., adverse weather, vehicle path intrusions, and slow traffic), or when other
important information is processed at the same time (e.g., an official traffic sign). In other words,
not only will the sign’s internal characteristics (overall size, legend size, color, contrast,
luminance level, etc.) affect crash risk, but so will external environmental factors (type of road,
speed, weather conditions, time of day, etc.). Hence, Molino et al. list all possible key factors and
suggest further studies to examine how they could influence safety. These factors are categorized
into two groups: independent and dependent variables. The independent variables are separated
by subject into five subgroups: billboard, roadway, vehicle, driver, and environment. It should be
noted that the relationship between EBBs and on-premise signs is discussed in the environment
subgroup, and dynamic factors of on-premise signs, such as change rate, motion, video, and
sound, are listed as extremely important. The dependent variables are separated into vehicle
behavior, driver/vehicle interaction, driver attention/distraction, and crash categories. Since there
are hundreds of related key factors, the authors claimed that “No single experiment can provide
the solution” and suggested future research programs to address the following topics: (1)
determining when distraction caused by commercial electronic variable message signs
(CEVMSs) affects safe driving, (2) investigating the relationship between distraction and various
CVEMS parameters, and (3) examining the relationship between distraction and safety surrogate
measures, such as eye glance and traffic conflicts.

Table 1 summarizes the literature review results from these two reports. This table shows that the
results of crash studies are not consistent, and most studies have some important weaknesses,
such as neglecting biases related to the regression to the mean (RTM) (discussed below) and site-
selection effects (using the naive method), low statistical power, and analysis results based on
erroneous assumptions. It should be noted that only post-hoc crash studies are listed here because
this study focuses on the change of crash rate caused by on-premise digital signs.

As mentioned, Table 1 shows that the results related to the safety effects of off-premise signs are
inconsistent. The inconsistencies can be fully or partly attributed to various study limitations. For
instance, the studies in the Wachtel and Netherton report (1980) and Wisconsin Department of
Transportation report (1994) both used a naive before-after study methodology (methodology
approaches are described in Chapter 4), and they did not account for the RTM bias, which may
change their estimates of crash rate and safety effects of signs. The general idea of RTM is that
when observations are characterized by very high (or low) values in a given time period and for a
specific site (or several sites), it is anticipated that observations occurring in a subsequent time
period are more likely to regress toward the long-term mean of a site (Hauer and Persaud, 1983).
Also, these studies should provide the variance of estimators (that is the uncertainty associated
with the estimator) for judging the statistical significance of their results. Moreover, grouping
studies where the objectives or types of signs are different is not appropriate. For example, the
goal of the report prepared by Tantala and Tantala (2007) was to study the safety impacts caused
by converting traditional billboards to digital billboards, while other studies focused on the safety
impacts after installation of new digital billboards. Those are two distinct effects that are
examined and should not be grouped together to evaluate the safety effects of on-premise digital



signs. Wachtel (2009) also noted other limitations in Tantala and Tantala’s study, such as a lack
of adequate before-after and comparison group data; no clear definition and reasonable
calculation of the visual range and legibility range of EBBs; and no crash data related to adverse
weather, impaired drivers, and interchanges.

Table 1. Safety effects of off-premise digital signs

Study Methods Data Type Results Location Sasritgle
Wachtel and Naive before- Crash Thf crash reduction of target area was Tele-Spot Not
Netherton after stud frequenc 10% less than the overall reduction sion. Boston | orovided
(1980) y q y (after the installation of the signs) en, p
Crash rate (eastbound): all crashes
increased 36%, sideswipe crashes
Wisconsin frecflaesnhc increased 8%, and rear-end crashes
Department of | Naive before- Ail/eragg’ increased 21% Milwaukee, )
Transportation | after study daily traffic | Crash rate (westbound): all crashes Wisconsin
(1994) (ADT) increased 21%, sideswipe crashes
increased 35%, and rear-end crashes
increased 35%
Before-after | Crash frequency, Dpwntown 1ntersegt10n sites: no
significant change in crash rate
study ADT, safety (all crashes increased 0.6% Toronto, 3
(empirical performance | . . . ; 0(’, Canada
. Bayes) function injury crashes increased 43%, and
Sm(léfg(’)g; al. rear-end crashes increased 13%)
Before-after f Crash Rural sites: no significant change in
requency, Toronto,
study crash rate based on most compared 1
ADT, control . Canada
(control group) aroup sites
Tantala and | Naive before- . . Cuyahoga,
Tantala (2007) |  after study Crash frequency, | No significant change in crash rate éhiog 7
Tantala and | No desodinti control group, Cuveh
antala an o description ADT L . uyahoga,
Tantala (2009) | of the method No significant change in crash rate Ohio 7

The second shortcoming in Tantala and Tantala (2007) is that they used a simple correlation
analysis between sign density and crash rate to examine safety effects of billboards. Using this
approach, they found that the correlation coefficients among the scenarios analyzed were very
low (around 0.20), indicating that the installation of billboards did not increase the number of
crashes. This may well be true, but they did not use the right analysis tool. For investigating the
relationship between sign density and the number of crashes, it is more appropriate to develop
one or several regression models since the safety analyst can have a better control over other
factors that can influence the number and severity of crashes (Lord and Mannering, 2010). In a
regression model, several independent variables can be included, which is better to estimate the
variable of interest (such as the installation of digital signs). However, it should be pointed out
that the before-after study, as performed in this study, still remains the best methodological
approach for estimating the safety effects of an intervention.

Among all studies in Table 1, Smiley et al. (2005) provides the more reliable results since they
used a before-after method using a control group (CG) and empirical Bayes (EB) approach. The



only limitation is related to the small sample size. The authors of the study only evaluated three
sites. Even with a small sample size, the EB method can still be successfully used to evaluate the
safety effects of an intervention, as was done by Ye et al. (2011). Ye et al. (2011) used the EB
method to estimate the safety impacts of gateway monument signs, which can be categorized as
one type of off-premise sign. Gateway monuments are roadside structures used to introduce a
city or town. These monuments usually have the name of the city or town and are located at the
city limits.

According to Wachtel et al. (2009) and Farbry, (2001), using crash data might not be a precise
method because crashes usually have multiple causal events, which are difficult to extract from
crash datasets. For example, they noted that sign internal variables (such as size, brightness,
viewing angle, etc.) might play main roles in drivers’ distraction or ignoring of official traffic
signs, while other external factors affect conflicts and crash risk. Although those reasons may be
legitimate, utilizing crash data is still the best approach for evaluating the safety effects of
interventions as well as those associated with operational and design features (Hauer 1997). As
stated by Hauer, “It follows that, in the final account, to preserve the ordinary meaning of words,
the concept of safety must be linked to accidents.” Furthermore, using crash data have other
advantages: lower cost and fewer artificial errors. Firstly, the cost of conducting a before-after
crash study is much lower than human-centered methods because the researchers do not need to
purchase equipment and hire participants for conducting driving tests. Secondly, crash data are
based on crash reports, which can provide a more accurate measure of safety than surrogate
measures such as speed, driver behavior, or other measures. Only by conducting a before-after
crash study can one provide results that combine multiple casual variables in the real world.
Other methods cannot displace the above advantages, which explain why the research team
selected the before-after methodology for estimating the safety effects of digital signs.

Characteristics of the Evaluation Methods Used in Previous Studies

This section describes the characteristics of other methods used in previous studies for
examining the safety effects of off-premise digital signs. In addition to a crash before-after study
approach, the most common study methods that have been used for examining the safety impacts
of off-premise signs include eye fixations, traffic conflicts, headways and speeds, and public
surveys. Most studies used one or more of the above methods to examine the impacts of off-
premise signs (Molino et al., 2009). For instance, Smiley et al. (2005) used four different
methods (eye fixation, conflict study, before-after crash study, and public survey) for examining
a video sign located in Toronto. On the other hand, Lee et al. (2007) used eye fixations and a
questionnaire for their study. It should be noted that the results from multiple measurements are
usually inconsistent.

Briefly, the eye fixation study method uses an eye-tracking system to record drivers’ eye
movements. The results (e.g., eye glances and durations) can provide direct evidence of where
drivers are looking while driving, leading to assumptions as to whether drivers are distracted
when they are driving near or toward a sign (or at other roadside features). Traffic conflicts,
often referred to as surrogate measures of safety, can be used for identifying risky driving
behaviors, such as braking without good reason, inappropriate lateral lane displacement, and
delays at the start of the green traffic signal phase. Headways and vehicle speed can be used to



assess distracted drivers since those drivers tend to have shorter headways and higher speed
variances.

Most details about experiment design, such as the participant number, study site size, driving
route length, and experiment duration can be found in Appendix B of the report prepared by
Molino et al. (2009). In the current study, the researchers focus the discussion on the before-after
crash data study method for two reasons. First, Molino et al. (2009) did not provide a detailed
experimental design for using crash data, and some studies were criticized for inappropriate
methodology (Tantala and Tantala, 2007; 2009). Second, the costs associated with other
experimental methods are significant and are greater than the resources that were allocated for
the current research study. According to Molino et al. (2009), the budgetary costs to conduct
research using other experimental methods vary between $0.4 million and $0.8 million for using
on-road instrumented vehicles, $2 million and $4 million for conducting a naturalistic driving
study, and $1 million and $3 million for using an unobtrusive observation approach.



CHAPTER 3:
STUDY DATA

To conduct the safety analysis, the research team had to develop plans for collecting the
necessary data, manipulating the data into a format that could be used for the safety analyses, and
then conducting the statistical analysis to identify the safety impacts of on-premise digital signs.
The success of this project relied upon the ability to acquire two distinct sets of data and the
robustness of the individual datasets. The two datasets needed for the analysis included (1)
information regarding the location and installation dates for on-premise digital signs, and (2) data
regarding crash histories on the roadways in the vicinity of the on-premise digital signs. The
latter also included information about operational (e.g., traffic flow and speed limit) and
geometric (e.g., functional class and lane width) design features located at and adjacent to the on-
premise digital signs. From the beginning of the project, the research team expected to use the
HSIS crash data for the crash history dataset. The real challenge of this project was identifying
specific information about on-premise digital signs for the states represented in the HSIS, and the
researchers encountered numerous challenges in acquiring this information. Once the data for
both groups were acquired, the researchers had to overcome differences in the datasets so that the
data could be merged into a single dataset for analysis. The activities associated with the
acquisition of the crash data, acquisition of the sign data, and the merging of the two datasets are
described in this chapter.

CRASH DATA

The HSIS is operated and maintained by the FHWA, and is widely used for safety research
programs that provide input for public policy decisions. The HSIS is a multistate relational
database that contains crash, roadway, and vehicle information. Crash information/files contain
basic crash information, such as location (based on reference location or mile-point), time of day,
lighting condition (e.g., daylight, dark and no lighting, dark and roadway lighting, etc.), weather
conditions, crash severity, the number of related vehicles, and the type of crash (e.g., head-on,
right angle, sideswipe, etc.). Each row in the spreadsheet file contains crash information for
individual crashes and a unique ID number, and each column represents a variable. The roadway
information/files provide traffic and geographic information for each roadway segment, such as
annual average daily traffic (AADT), speed limit, beginning mile-point, end mile-point, number
of lanes, lane and median width, shoulder width and type, rural or urban designation, and
functional classification. The vehicle information/files contain driver and vehicle information,
such as a crash identification number, driver gender, driver age, contributing factor (possible
casual factor), vehicle type, and others. These individual file types can be linked together as a
whole dataset. For example, crash files and road files can be linked by their location information
(route number and mileage), or crash files and vehicle files can be linked together by their crash
identification number.

Currently, there are seven states that actively participate in the HSIS: California, Illinois, Maine,
Minnesota, North Carolina, Ohio, and Washington. However, the HSIS has an upper limit on the
amount of data that can be requested by researchers (including the number of states, the request
area, and total variables). To maximize the value of the crash data that they could request, the



research team held discussions with the research advisory panel to identify the states (from the
list of seven HSIS participating states) where there would be higher concentrations of on-premise
digital signs. Based on this input, the research team requested HSIS data for California, North
Carolina, Ohio, and Washington in order to get a maximum number of study sites. All crash
datasets were downloaded from the HSIS website and stored in a spreadsheet format. The
definitions for the variables in a state’s crash data were found in the HSIS guidebooks. It should
be noted that each state has its own guidebook and data record format. In other words, one
specific variable might be available for some states, but this variable may have different
meanings or category types, or even be unavailable for other states. The inconsistent definitions
among different states’ crash datasets can affect the quality of analysis and results when selecting
specific variables for identifying target crashes (such as rear-end crash) needed for more
advanced analysis. The differences between states also create challenges when trying to merge
data into a single dataset for analysis.

Although the HSIS dataset provides the most comprehensive crash data from different states, the
HSIS has some limitations. First, the HSIS only includes crashes that occur on major roads, such
as interstate highways, U.S. highways, and state highways. The HSIS dataset may not include
crash-related data for secondary roads in rural areas or city streets in urban areas, including
arterial streets that are major roads in a city but are not on the state highway system. Table 2
identifies the level of crash coverage and roadway length for each state selected for the analysis.

Table 2. HSIS crash coverage and roadway length by state
1. More than 500,000 crashes occur each year; HSIS includes about 38% of those crashes.

California 2. HSIS includes 15,500 miles of mainline (non-ramp) roadways.
North 1. About 230,000 crashes occur each year; HSIS includes 70% of those crashes.
Carolina 2. Of the 77,000 miles of roadway on the North Carolina state system, approximately

62,000 miles are included in the database.

—_—

. About 380,000 crashes occur each year; HSIS includes 40% of those crashes.
Ohio 2. In Ohio, about 116,000 miles of highway in total; HSIS includes approximately
19,500 miles of roadway.

1. 130,000 crashes occur each year; HSIS includes 37% of those crashes.

Washington 2. HSIS contains 7,000 miles of mainline (non-ramp) roadway.

Another limitation of the HSIS data is that the dataset is not continuously updated. The HSIS
data represent the final crash datasets from each state after the state has processed the crash data.
As a result, the HSIS dataset may not include the last several months or more of crash data from
a state. Currently, the most updated HSIS crash data are through 2009 (California is updated to
2008), so the most recent one or two years of crashes are not included in the HSIS data. Also, the
oldest HSIS crash data extend back only through 2004. Limiting crash data to the period from
2004 to 2009 was a significant consideration in this research project because the large growth of
on-premise digital signs is relatively recent, having mostly grown since the mid- to late 2000s.
The lack of data for the last two to three years created challenges with respect to developing a
robust statistical analysis procedure. For a comparison of safety impacts of a treatment (such as
installation of a digital sign) to be meaningful, both the before and after analysis periods need to
be about equal and as long as possible. This meant that, to have two-year analysis periods (two
years before and two years after) in the safety analysis, on-premise digital signs needed to be
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installed in either 2006 or 2007. In order to focus the safety analysis on the long-term impacts of
on-premise digital signs, the researchers did not include the calendar year of installation of a sign
in the analysis. For example, if a sign was installed in 2006, the before period was calendar years
2004 and 2005, and the after period was calendar years 2007 and 2008.

An additional limitation of the HSIS crash data is that the crash location within the HSIS is
identified to the nearest 0.1 mile (528 ft) on the roadway. This required the safety analysis to be
conducted for the tenth of a mile length of roadway that a sign was located within. The level of
accuracy is the primary reason that 0.1 miles was chosen as the effective area of the sign.

The researchers viewed the limitations mentioned above as minor and ones that had minimal
impact on the study results. There are no comparable crash datasets available to researchers that
could be used for a similar type of analysis of crashes. The only alternative available to the
researchers would have been to try and obtain crash data from individual agencies where on-
premise digital signs have been installed. Such an approach may have provided more specific
data about individual signs and site characteristics, but would have resulted in an extremely
small dataset. The researchers felt that such small sample sizes would not provide sufficient
robustness for statistical analysis and that the approach using the HSIS data provided greater
scientific validity and robustness, as discussed in the previous chapter.

SIGN DATA

With the acquisition of the HSIS data, the research team had information to analyze crashes but
had no idea about where to conduct the analysis. Determining the location for the crash analysis
required information regarding the location of on-premise digital signs. Furthermore, due to the
date limitations of the HSIS data, only sign sites where the sign was installed in 2006 or 2007
could be used for the crash analysis. So the research team began the process of identifying
locations in California, North Carolina, Ohio, and Washington where on-premise digital signs
had been installed on major roads in 2006 or 2007.

Initial attempts to identify sign locations focused upon getting information from the Signage
Foundation, Inc., (SFI) research advisory panel. However, the results did not provide a large
enough sample size for a robust statistical analysis. The research team began to contact sign
installation companies but encountered challenges in acquiring the large amount of data needed
to conduct the research. The primary challenge associated with contacting sign installation
companies (which are the same companies that market the signs to individual businesses) was
the proprietary nature of the business information the research team was requesting. Another
challenge was the large number of individual companies that needed to be contacted to develop a
robust sample size.

Because of the challenges of working with sign installation companies, the research team shifted
the focus to sign-manufacturing companies. Eventually, the research team was able to work with
two electronic sign-manufacturing companies to get a list of on-premise digital signs installed in
any of the four study states during 2006 or 2007. Each of the two lists was converted into
datasets for use in the research effort. The first dataset (dataset #1) contained 2,953 sign sites and
27 variables, which included the characteristics of signs and roads, such as sign order date, sign
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address (road, county, and state), the nearest cross street and its distance from the sign, the
nearby cross street with the highest volume and its distance from the subject intersection, and
traffic volume on the subject road. The research team did not use the road information from
dataset #1, relying instead upon the road data in the HSIS crash dataset. This ensured consistency
in the approach with the different sign datasets. Also, the sign installation date was considered to
be the sign order date plus two weeks. This assumption was based on input from the sign-
manufacturing company. Since the entire year that the sign was installed was excluded from the
analysis, this was considered not to be a critical issue.

The second dataset (dataset #2) had 63 site addresses and 10 variables. Unlike the first dataset,
most variables in dataset #2 were related to product information, such as installation data, sales
representative, product name, matrix, color, customer ID (address), and status of signs.

For the analysis, these two datasets were combined as one for use in analyzing the crashes by
individual state. The combined dataset was further refined by removing all sign locations that
were not installed in either 2006 or 2007. The calendar year that a sign was installed was treated
as the construction year, and the crashes that occurred in that year were removed from the
analysis. The entire calendar year was removed from the analysis due to uncertainty over the
actual installation date of the sign since the data provided only the order date for the sign.
Removing the entire calendar year associated with installation also eliminated the novelty effect
associated with implementing a new feature. The second variable, the sign installation address,
was used to select related crashes by the sign’s location and default sign-effective areas. For
example, the researchers defined the crashes located within 0.1 miles from the target signs as
related crashes. In reality, the effective area could be larger or smaller depending upon the sign
size. The procedure used for this analysis did not adjust the effective area based on sign size or
other factors. Overall, significant effort was put into ensuring the accuracy of the sign datasets
because the quality of the data had a huge impact on the precision and accuracy of the analysis.

DATA-MERGING PROCEDURE

The previous sections explain how the researchers obtained their study data (the sign dataset and
the crash dataset) and the characteristics of each dataset. This section gives more details about
the dataset-merging procedure. Several steps were involved in merging the crash and sign
location datasets into a single dataset that could be used for statistical analysis. The early steps
focused on confirming that the digital sign was still in place and near the road that it is related to.
This was needed because a site could have an address on one road but have the sign facing traffic
on another road bordering the site property. The later steps focused upon converting the street
address of the sign location to a route and milepost value that could be used with the crash
dataset. This complex effort was necessary due to the fact that the sign and crash datasets used
different location methods. The sign dataset was based on the site address, while the crash
database was based on route number and milepost. For example, a location in the sign dataset
would record a location with “1234 North Highway 101, Anytown, WA 98584,” but the HSIS
would show the same location as “route number = 23101 and “mile post = 335.72.” In order to
define the related crashes that were adjusted to the target signs, the researchers needed to transfer
sign locations into the HSIS location system. The basic steps are described below and illustrated
in Figure 2.

12



Sign Dataset
(From SFI)

Do signs have

enough information?
1. Address
2. Installation date

Are signs digital
and on-premise?
(Use Google Maps
to check)

Use Google Earth to measure Crash Dataset
milepost from county boundaries (From HSIS)

Are crashes related
totarget signs?
Use route # and milepost to check

Target crash
dataset

Figure 2. The flow chart for data collection and merging procedure

For each record of the combined sign dataset (3,016 total records), the research team
evaluated the location information (typically a street address) and the sign order date.
Records with missing or incomplete location information or with assumed sign
installation dates that were not in 2006 or 2007 were deleted from the dataset.
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2. Research team members then verified the location of the sign using the site address in the
sign dataset and taking the steps listed below. Figure 3 shows an example table that the
researchers used for the above data collection, including screenshots of Google Maps and
Google Earth (Google Earth, 2008). Columns 1-3 are the address information given by
the sign companies. Columns 4—7 are determined through Google Maps, and Columns
8—11 are determined through Google Earth.

a. The sign was located in Google Maps using the site address.

b. Using the Street View feature of Google Maps, a member of the research team
identified the sign on the site or deleted the record with a note that the on-premise
digital sign could not be identified. There were some challenges associated with
finding digital signs using the Street View pictures from Google Maps, including
fuzzy pictures with low resolution, which made it difficult to evaluate some signs,
and digital signs that were not obvious during the daytime (Street View provides only
daytime pictures).

c. The screen image of the subject sign was saved, and basic sign characteristics were
identified and/or estimated. Examples include sign color, size, and business type.

d. An initial determination was made as to whether the sign was located on a major road
that would be part of the HSIS crash dataset. If the road was not expected to be a
major road, the record was deleted from the dataset.

3. The sign location was entered into Google Earth to determine the county in which the
sign was located and the mileage from the county border. This included identifying the
county identification code in the appropriate HSIS manual for a given state. This
provided the milepost location information needed to relate the sign location to the
location information in the crash dataset. Defining the milepost information required
doing the following:

a. Identifying the neighboring county, which was used to determine in which direction
the mileposts were increasing.

b. If the county had mileposts restarting at zero at the county borders, determining in
which direction they were increasing, based on the number of lanes at the borders. If
the direction could not be determined, a general rule of increasing from west to east
or south to north was used.

c. Using the path tool in Google Earth to measure the distance from the county border to
the sign. This distance and the beginning milepost at the county border established the
milepost of the sign.

An example (using the above procedure) can be founded in Appendix A. After target sign

locations were transferred into the HSIS locating system, a statistics software package, “R,” was
used to select the related crashes among the whole HSIS dataset.
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Google Map ] Google Earth
4 Note
Sign Installation #Picture Color Dimension | Business §County |Route # | Distance | Mile
D Address date (Single/ Type | D post
Multi)) ]

Figure 3. Example work table of site data collection
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CHAPTER 4:
STUDY METHODOLOGY

Evaluating the effects of treatment on the number and severity of crashes is a very important
topic in highway safety. For the last 30 years, various methods have been proposed for
evaluating safety treatments (Abbess et al., 1981; Danielsson, 1986; Davis, 2000; Hauer, 1980a;
Hauer, 1980b; Hauer et al., 1983; Maher and Mountain, 2009; Miranda-Moreno, 2006; Wright et
al., 1988). The methods are classified under two categories: the before-after study and the cross-
sectional study. In a before-after study, the safety impacts of an improvement or treatment at a
given location are determined by comparing the change in crashes before and after the
improvement/treatment was installed. In a cross-sectional study, crashes or crash rates on two
different facilities with similar characteristics except for the improvement of interest are
compared. The before-after study is typically more desirable because it provides a more direct
evaluation of the safety impacts. Although they have been used by some researchers (Noland,
2003; Tarko et al., 1998), cross-sectional studies are more difficult to conduct because different
facilities are rarely identical in all features except the one of interest. Hence, the cross-sectional
approach was not used in this research. The before-after type of study can be further divided into
several types:

naive before-after study,

before-after study with control group,
before-after study using the EB method, and
before-after study using the full Bayes approach.

The before-after study using the full Bayes approach is a more recent development in statistical
safety analysis, developed and used by several noted safety researchers (Hauer and Persaud,
1983; Hauer et al., 1983; Hauer, 1997; Li et al., 2008; Persaud and Lyon, 2007). The advantages
and disadvantages for each of the above before-after methods are described in more detail in this
chapter.

A BEFORE-AFTER STUDY AND A CROSS-SECTIONAL STUDY

As mentioned previously, observational crash studies can be grouped into two types: the before-
after study and the cross-sectional study. The selection of the study type is based on the
availability of historical crash data, traffic volume, or the comparison group. The following
sections provide details about the before-after methodology.

The Before-After Study

The before-after study is a commonly used method for measuring the safety effects of a single
treatment or a combination of treatments in highway safety (Hauer, 1997). Short of a controlled
and full randomized study design, this type of study is deemed superior to cross-sectional studies
since many attributes linked to the converted sites where the treatment (or change) was
implemented remain unchanged. Although not perfect, the before-after study approach offers a

16



better control for estimating the effects of a treatment. In fact, as the name suggests, it implies
that a change actually occurred between the “before” and “after” conditions (Hauer, 2005).

As described by Hauer (1997), the traditional before-after study can be accomplished using two
tasks. The first task consists of predicting the expected number of target crashes for a specific
entity (i.e., intersection, segment where an on-premise sign was installed, etc.) or series of
entities in the after period, had the safety treatment not been implemented. In other words, the
before-after approach described by Hauer compares the expected number of crashes in the after
period with the treatment installed to the expected number of crashes in the after period had the
treatment not been installed. The calculation for each expected number of crashes is based on
numerous factors, including the actual number of crashes in the before condition, the actual
number of crashes in the after period, and incorporation of site-specific and statistical
considerations. The symbol 7 is used to represent the expected number of crashes in the after
period (a summary of all statistical symbols used in this report are presented in Appendix B).
The second task consists of estimating the number of target crashes (represented by the

symbol A) for the specific entity in the after period. The estimates of 7 and A are 7 and p)
(the caret or hat represents the estimate of an unknown value). Here, the term “after” means the
time period after the implementation of a treatment; correspondingly, the term “before” refers to
the time before the implementation of this treatment (an on-premise digital sign in this study). In

most practical cases, either 7 or A can be applied to a composite series of locations (the sum of
i’s below) where a similar treatment was implemented at each location.

Hauer (1997) proposed a four-step process for estimating the safety effects of a treatment. The
process is described as follows (see also Ye and Lord, 2009):

e Step l:Fori=1, 2, ..,n,estimate A(i) and 7(i). Then, compute the summation of the
estimated and predicted values for each site i, such that 4 = Z A(i) and 7 = Zfz(i) :

e Step2:Fori=1, 2, .., n, estimate the variance for each, Var{A(i)} and Var{#(i)}. For
each single location, it is assumed that observed data (e.g., annual crash counts over a
long time frame) are Poisson distributed and (i) can be approximated by the observed
value in the before period. On the other hand, the calculation of Var {7 (i)} will depend on

the statistical methods adopted for the study (e.g., observed data in naive studies, method
of moments, regression models, or EB technique). Assuming that crash data in the before

and after periods are mutually independent, then Var{i} = ZVar {A(i)} and
Var{#} =) Var{z(i)} .

e Step 3: Estimate the parameters 0 and &, where S=r-1 (again, referring to estimated
values) is defined as the reduction (or increase) in the number of target crashes between
the predicted and estimated values, and 0= 1/# is the ratio between these two values.
When 6 is less than one, the treatment results in an improvement in traffic safety, and
when it is larger than one, the treatment has a negative effect on traffic safety. The term
0 has also been referred to in the literature as the index of effectiveness (Persaud et al.,
2001). Hauer (1997) suggests that when less than 500 crashes are used in the before-after
study, @ should be corrected to remove the bias caused by the small sample size using
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the following adjustment factor: 1/[1+Var{z}/7#>]. The total number of crashes was

over 500, but the adjustment factor had to be applied when subsets of the data, such as
single- or multi-vehicle crashes, were analyzed.

e Step 4: Estimate the variances Var {5} and Var {0} . These two variances are calculated

using the following equations (note: Var {@} is also adjusted for the small sample size):

¢ Var{d} =Var{i}+Var {#} (Eq. 1)
v Var{) = 92[(\/ar{/1}//12)jr(Vfizf{fz}/ffz)] (Eq. 2)
[1+Var{z}/7°)]

The four-step process provides a simple way for conducting before-after studies. Three common
before-after methods will be introduced in the following sections. All three methods use the
same four-step process.

COMMON METHODS FOR CONDUCTING A BEFORE-AFTER STUDY

Having selected the before-after study approach, the research team then needed to decide which
specific before-after method would be the most appropriate for analyzing the safety impacts of
on-premise digital signs. This section of the report describes the methodologies and data needs
associated with three before-after study types: naive before-after studies, before-after studies
with a CG, and the EB method.

Naive Method

Among all the before-after methods, the naive method is the simplest. The estimation of 0 is
simply equal to the ratio between the number of crashes in the after period and the number of
crashes in the before period (which is used to predict the number of crashes in the after period if
the treatment was not implemented). Equation 3 illustrates how the index of safety effectiveness
is calculated. This method is very straightforward, but it is seldom used in the current safety
study because it does not account for the RTM bias. Not including the RTM bias could
overestimate the effects of the treatment or underestimate the safety impacts. The naive method
does not account for external factors that occur at the local or regional level, such as changes in
weather patterns or economic conditions.

_ ZinzlztjleiJT2
TN ot T
Zi=12j=1NiJTl

A

naive

§>|§J>

(Eq. 3)

Where
0..iv« = the estimate of safety effectiveness by using the naive method,
7 = the predicted number of crashes for the treatment group in the after period,

A = the estimated number of crashes for the treatment group in the after period,
n = the sample size,
t = the time period,
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N J , = the observed response for site i (T = treatment group) and year j (in the before period),

and
N J , = the observed response for site 1 (T = treatment group) and year j (in the after period).

The result can be adjusted when the traffic flow and time interval are different between the

before and after periods. It is adjusted by modifying the predicted number of crashes as shown in
Equation 4:

n t
7T =141 Zile]:l M (Eq. 4)

Where
I, = the ratio of the duration between the after and before periods, and
r, = the ratio of the traffic flow between the after and before periods.

Control Group Method

The CG method can be used to help control for external factors. The number of crashes collected
at the control sites is defined as p (before) and v (after). The adjusting factor, the ratio of v to p,
is used to remove the effects caused by other external factors from m in the theorem. Equation 5
illustrates how to adjust the naive estimate. It should be pointed out that the RTM could
technically be removed if the characteristics of the control group are exactly the same as those of
the treatment group. However, getting control group data with the exact same characteristics may
not be possible in practice, as discussed in Kuo and Lord (2012). Collecting control group data
usually adds extra cost and time compared to the naive method since more data needs to be
collected.

O = = (Eq. 5)

Where

0. = the estimate of safety effectiveness by using the control group method,

o

= the estimated number of crashes for the treatment group in the after period,

7 = the predicted number of crashes for the treatment group in the after period,

v = the estimated number of crashes for the control group in the after period,

[t = the estimated number of crashes for the control group in the before period,

NiJT " Ni(j:1 = the observed responses for site i (T = treatment group and C = control group) and
year j (in the before period), and

N”T - Nijc2 = the observed responses for site i (T = treatment group and C = control group) and

year j (in the after period).
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Empirical Bayes Method

The EB method is recommended in the Highway Safety Manual (HSM), published by the
American Association of State Highway and Transportation Officials (AASHTO) and approved
for use by the FHWA (AASHTO, 2010). The HSM is a recent document that defines
standardized procedures for conducting safety analyses of highway safety improvements. The

EB method combines short-term observed crash numbers with crash prediction model data in
order to get a more accurate estimation of long-term crash mean. The EB method is used to
refine the predicted value by combining information from the site under investigation and the
information from sites that have the same characteristics, such as range of traffic flow, number of
lanes, lane width, etc.

As an illustration, Hauer et al. (2002) use a fictional “Mr. Smith” to illustrate use of the EB
method: Mr. Smith is a new driver in a city. He has no crash records during his first year of
driving. Based on past crash histories for the city, a new driver in that city has 0.08 accidents per
year. Based only on Mr. Smith’s record, it is not reasonable to say that he will have zero
accidents or have 0.08 accidents for the next year (based on the average of all new drivers but
disregarding Smith’s accident record). A reasonable estimate should be a mixture of these two
values. Therefore, when estimating the safety of a specific road segment, the accident counts for
this segment and the typical accident frequency of such roads are used together.

The index of safety effectiveness is illustrated in Equation 6. With the EB method, the analyst
first estimates a regression model or safety performance function (SPF) using the data collected
with the control group. Then, the model is applied to the sites where the treatment was
implemented to get a preliminary predicted value for the after period. The EB method is then
used to refine the estimate to account for the RTM bias and the external factors. It is possible for
the EB method to be biased if the characteristics of the treatment and control groups are not the
same (Lord and Kuo, 2012).

n t
_ Zi:le:lNiJTZ
Zinzlztj:lM iL

A

EB —

(Eq. 6)
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Where

éEB = the estimate of safety effectiveness based on the EB method;

7 = the predicted number of crashes for the treatment group in the after period;
A = the estimated number of crashes for the treatment group in the after period;
M, = the expected responses for site i for the EB method,

t
M;; = Wx(A)) +(1_W)X(ZNU1) ;
=

W = the weight for sites for the EB method, W = A; ;

1+A, xé
Al = the estimate for the average number of crashes of all sites in the before period; and

a = the estimate of the dispersion parameter.
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Al and & can be estimated using two different approaches (Hauer, 1997). They can be estimated

based on a regression model or the method of moment. Both are calculated using data collected
as part of the control group. For this research, the average number of crashes and dispersion
parameter were estimated using a regression model.

CALCULATION PROCEDURES AND EXAMPLES

The EB before-after method was applied to this study with the regression models or SPFs
selected from the HSM (AASHTO, 2010), which includes road types from two to five lanes. As
for sites located on wider roads (six lanes and eight lanes, which are not covered in the HSM),
the researchers used the SPFs from a Texas A&M Transportation Institute (TTI) study
(Bonneson and Pratt, 2009). The number of crashes in each year during the before period (A, )

was estimated using the regression model shown in Equation 7:
A; =exp(a+bLn(AADT,)+ Ln(L,)) (Eq. 7)

Where

A, = the estimator for the average number of crashes per year for site i,
a,b = the coefficients in the regression model,

AADT, = the average daily traffic volume for site i,

L, = the road length for site i, and

Ln = natural logarithm.

Table 3 shows the regression coefficients (a, b) used in Equation 7 for multi- and single-vehicle
crashes.

One of the sign sites in Ohio provides an example of the detailed calculation of M ¢ . This site

is on an urban 4-lane divided highway segment in Allen County. As shown in Table 3, its
intercept is -12.34 for multi-vehicle crashes and -5.05 for single-vehicle crashes, while the
coefficients for the AADT are 1.36 and 0.47, respectively. For the analysis used in this report, a
multi-vehicle crash is one involving two or more vehicles in the same collision.

Using the EB method, the analysis procedure to get the expected number of crashes in the before
period has the following steps:

1. Identify the route number and milepost by the site’s address. More specifically, the
address of the example site is “1234 ABC St, Name of City, Allen County, OH.” Follow
the data analysis procedures discussed in Chapter 3 to identify that the route number is
657676309 and the milepost is 7.58.
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Table 3. Coefficients for multi and single-vehicle crash regression model

Regression Coefficients
Crash Type Road Type* Dispersion Parameter (o)
Intercept (a) AADT (b)
2U -15.22 1.68 0.84
3T -12.4 1.41 0.66
Multi- 4U ~11.63 1.33 1.01
vehicle
4D -12.34 1.36 1.32
5T -9.7 1.17 0.81
2U —5.47 0.56 0.81
3T -5.74 0.54 1.37
Single- 4U ~7.99 0.81 0.91
vehicle
4D —-5.05 0.47 0.86
5T —4.82 0.54 0.52

Note: *U = undivided road, T = road with two-way left turn lane, D = divided road.

2. Based on the route number and milepost obtained above, use R statistical software to
select the related crashes and road files from the HSIS dataset, which includes (1) the
observed crashes near the target sign site, (2) the observed crashes in the control group
sites (10 sites, which are adjusted to the target sign site on the same road), and (3) the
target road file, such as traffic volume, the number of lanes, and median type. For
example, the number of observed crashes at the example site is 1 in 2004, and the crash
counts of the related 10 control group sites are 0,0, 1, 1,0, 0,0, 0, 1, and 1. The AADT
of the site is 19,753 (vehicles/day), and it has four lanes.

3. Use Equation 9 to predict the crash number of the example site:

~

Ay, = exp(a+b(Ln(AADT))+ Ln(L)
Asoosmas = €Xp(=12.34+1.36x Ln(19753) + Ln(0.2)) = 0.61
Asoossnge = €XP(=5.05+0.47x Ln(19753) + Ln(0.2)) = 0.13

~

Asoos = Nogo s + A2004,single =0.74 (crashes/year)

The estimated crash counts of the site and its control group sites are 0.74 and 6.64,
respectively (the estimated multi-and single crash counts of its control group are 5.36
and 1.28).

4. Due to using the SPFs from the HSM instead of the local SPFs from any existing studies
conducted in the same study area, it is necessary to multiply the results by a calibration
factor to adjust the prediction value (refer to Appendix A in the HSM for more details).
The calibration factor of single-vehicle crashes at the example site in 2004 is 3.13, which
is equal to the ratio of observed crashes in the control group divided by the predicted
crash number in the control group (3.13 = (1x4+0x6)/1.28). By multiplying the above
calibration factor, the final crash number estimation for the example site in 2004 should
be 0.42 (=0.13%3.13). A calibration factor was calculated for each site and each year
included in the study.
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. Repeat steps 3 and 4 to get the final prediction crash number for the example site for each
year in the before period. By doing so, the estimated multi- and single-vehicle crash
counts of the site in 2005 are 4.65 and 0.21, respectively. Using the summary of this
prediction crash number and dispersion parameter (obtained from Table 3) results in the
weights (W) for this site for the multi- and single-vehicle crashes, which are 0.07 and
0.65, respectively:

W= Al
1+A, xa
Wois = 1 = 1 =0.07,
1+(5.43+4.65)x1.32  1+10.08x1.32
1 1

Wsin e — = =0.65
£ 1+(0.42+0.21)x0.86 1+0.63x0.86

. Because traffic volume and other explanatory variables may change between the before
and after periods, the researchers used one factor to account for this difference. The crash
counts of the example site in 2007 and 2008 can be estimated by repeating steps 3 and 4.
The estimated multi- and single-vehicle crash counts of the site in the after period are
0.84 and 0.67, respectively. Factors are estimated by:

r= Aaﬁer/‘;\before
s = (12.76/3)/(10.08/2) = 0.84
[ snge = (0.63/3)/(0.63/2) =0.67

Also, if the time periods (Y) of the before and after periods are different, one factor is
needed to adjusted it. Here, the before and after period are both two years:
t' = Yi,after /Yi,before = 3 / 2 = 15

. Using the EB method, the expected total number of crashes that would occur during the
after period had the on-premise digital sign not been installed was 2.63:

t
M = WX(A1)+(1_W)X(ZNij1) XTI xt,

j=1

M, s =[0.07x10.08+(1-0.07)x0]x0.84x1.5=1.14
M, gters =[0-65%0.63+(1-0.65)x3]x0.67x1.5=1.49
M, s =1.14+1.49=2.63

. The variance of the EB estimate at the example site is calculated by:
Var(Ml,EB) =(1-W)x M, gg X1, X,

Var(M, i) = (1-0.07)x1.14x0.84x1.5 = 1.31
Var(M, o) = (1-0.65)x1.49% 0.67x1.5 = 0.54
Var(M, ) = 1.31+0.54 =1.85

. The safety index of the example site is:
A n toNT

é _i_ Zi:le:lNijz _ 9
Vs

A Y Y M, 26

j=1 1J 1

23



10. The 95 percent confidence interval of the example site is given as.

6+2,,, Var(M, ) = [3.43£1.96x/1.85 | =[0.76,6.10]

The same method was applied to other locations using the appropriate SPFs. The next chapter
provides the final results of the completed safety analysis.
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CHAPTER §:
RESULTS

The previous chapter explained why the research team chose to use the EB analysis procedure
and provided an example of how the EB analysis was conducted. The first section of this chapter
provides the results of the before-after study for each state and all the states combined. The
second section provides more details about how digital on-premise signs impact traffic safety for
multi-vehicle and single-vehicle crashes. The third section provides a description of an analysis
of variance of the means of the safety index (0) among the different sign characteristics such as
sign color, sign size, and type of business.

INDIVIDUAL AND COMBINED RESULTS

As described in Chapter 3, the research team acquired the sign dataset from sign manufacturers.
However, many signs were excluded from the analysis because of missing information in the
dataset provided by the sign manufacturers or limitations in the HSIS crash dataset. The
researchers retained only sign sites satisfying the following conditions:

1. the sign was located in Washington, North Carolina, Ohio, or California;
the sign was installed in 2006 or 2007 in order to have adequate time in both the before
and after analysis periods to compare crash histories; and

3. the sign was located on a major road because the HSIS crash dataset usually does not
include crashes that are located on minor roads or private driveways.

Table 4 shows the progression in sample sizes based on sites meeting the conditions identified
above. For example, the original dataset for Washington included 413 site addresses that might
have an on-premise digital sign. In order to make sure there was an adequate before-after crash
data period for further analysis, the researchers had to filter these site addresses. The first filter
excluded sites where the sign was not installed in 2006 or 2007, which was needed so that there
was adequate time before and after the sign was installed to perform the safety analysis. About
40 percent of the Washington sites (159 sites) met this criterion. Then, the research team used the
Street View function in Google Maps to double-check whether a digital sign was present at the
given addresses and whether the sign was on a major road since the HSIS crash dataset only
included crashes on major roads. Only 33 sites fit this criterion. The result was that in
Washington, the research team was able to use about 33 of the 400 original sites, giving an

8.0 percent yield on the raw data.

Chapter 3 mentions that the main advantage of this study is the large sample size of data and
advanced statistical methods that provide more accurate results than in similar studies. Figure 4
shows the sample size of this study in relation to other published papers and reports. This study
has 135 sites from four states, a number much higher than the sample size of other similar
studies. Hence, the results of this study are more robust and accurate.
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Table 4. Sign site sample size yield

Number of Sites California Nort.h Ohio | Washington All
Carolina States
Included in original list from sign manufacturers 86 249 372 413 1,120
Sign installation time between 2006—-2007 27 94 178 159 458
Digital signs & located on major roads 6 40 73 34 153
With HSIS crash data (all crashes) 6 33 63 33 135
Data yield rate 7.0% 13.3% | 16.9% 8.0% 12.1%
With HSIS crash data (multiple-vehicle crashes) 6 31 61 33 131
With HSIS crash data (single-vehicle crashes) 6 32 63 33 134
140 133
120
100
g
7 80
E,[I
Z 60
40
20 =
._1_
0
Smiley et al. (2005) Tantala & Tantala Current Study (2012)
(2007)

Figure 4. A comparison of sample sizes from similar studies

Table 5 presents the before-after results from the EB and the naive statistical analysis methods.
The naive method results are provided only for comparison purposes as the naive analysis
method does not provide as meaningful results as the EB method. The results are also presented
graphically in Figure 5. A safety effectiveness index () of 1.0 indicates that there was no change
in crashes between the before and after conditions. An index greater than 1.00 indicates that
there was an increase in crash frequency in the after condition, while a value less than 1.00
indicates a decrease in crash frequency. The upper and lower bounds indicate the limits of
statistical significance. If the value for 0 is between the upper and lower bounds, then the change
in crashes is not statistically significant at a 95 percent confidence level. A larger sample size
usually leads to a smaller difference between the upper and lower bounds, but this may not
always be the case since it is also governed by the variability observed in the data.
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Table 5. Results of statistical analysis of before-after crash condition

EB Method Naive Method
State Lower Bound 0 Upper Bound | Lower Bound 0 Upper Bound
California 0.00 1.25 2.53 0.28 0.85 1.41
North Carolina 0.87 1.14 1.41 0.88 1.13 1.39
Ohio 0.89 0.97 1.05 0.95 1.05 1.15
Washington 0.88 1.01 1.15 0.79 0.90 1.01
All states* 0.93 1.00 1.07 0.93 1.00 1.07

Notes:  *“All states” represents the combined data of the four states.
Naive method values provided for comparison purposes only.
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Figure 5. The safety effectiveness index and the 95 percent
confidence interval for each state (all crash types)

The overall results show that there is no statistically significant increase in crash frequency after
installing the on-premise digital sign because the safety effectiveness index (8) for the entire
dataset (all states) is 1.00, and the 95 percent confidence interval is 0.93—1.07 (which includes
the index value of 1.00). The results for individual states are similar: no statistically significant
safety impacts were observed after the installation of digital signs. In addition, one can see the
width of the 95 percent confidence interval is largest for the California data. This is due to the
variability of the California data and the small size of the sample set (only 6 sites). Comparing
the width of the confidence intervals, from the widest to narrowest, the order is California >
North Carolina > Washington > Ohio > All States.
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RESULTS FOR CRASHES RELATED TO MULTIPLE AND SINGLE VEHICLES

The next analysis effort evaluated the possible safety impacts of on-premise digital signs on
different types of crashes. There are several common methods to group crashes into different
categories, such as the number of related vehicles, the injury levels, the collision types, and so
on. Such groupings may provide some insight into the safety impacts of specific crash types, but
the estimated impacts might not be precise because of a smaller sample size.

The additional analysis separated crashes into two subgroups: single- and multi-vehicle crashes.
All calculations and notations were the same as used previously. By using the EB method to
analyze crash data related to multiple vehicles, the researchers determined that the safety
effectiveness index is equal to 1.00 for all states, and the 95 percent confidence interval varies
between 0.96 and 1.21. Because the confidence interval of the safety effectiveness includes 1.00,
there is no statistically significant change in crash frequency after installing the on-premise
digital sign. Figure 6 graphically illustrates the results for multi-vehicle crashes. The 95 percent
confidence intervals are slightly larger in this figure than in Figure 5.
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Figure 6. The safety effectiveness index and the 95 percent
confidence interval for each state (multi-vehicle crashes)

The results for single-vehicle crashes are presented in Figure 7. The overall results are the
similar: there are no statistically significant safety impacts from digital signs, except for
California. The California results for single-vehicle crashes indicate a statistically significant
decrease in crash frequency in the after period. Although the before-after results of California
show a decrease in the after period, it does not affect the overall result because the low sample
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size (6 sites) makes it more difficult to establish statistical significance in the analysis results. It
is also worth noting that the North Carolina data has the largest confidence interval, due to the
variability in the North Carolina single-vehicle crash data.
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Figure 7. The safety effectiveness index and the 95 percent
confidence interval for each state (single-vehicle crashes)

RESULTS FOR CRASHES RELATED TO DIFFERENT TYPES OF SIGNS

The research team also conducted an analysis to investigate the impacts of specific on-premise
digital sign characteristics on the safety impacts of those signs. Specific sign characteristics that
the research team evaluated included color (single or multi-color), size (small, medium, or large),
and type of business. The research team used the analysis of variance (ANOVA) analysis method
to evaluate whether the means of the safety index (8) among the different characteristics of signs

are equal.

An ANOVA is one of the most common statistical methods used to compare two or more means
in the analysis of experimental data. In short, ANOVA provides a statistical test of whether or
not the means of multiple groups are all equal, while a t-test is suitable only for the two-group
case because doing multiple two-sample t-tests would increase the risk of a Type I error (for
datasets containing more than 30 observations). In addition, when there are only two means to
compare, the t-test and the ANOVA are equivalent. As a result, the research team chose the one-
way ANOVA as the study tool to simplify the methodology, although some digital sign
characteristics, such as sign color, have only two subgroups (i.e., single color and multi-color).
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The theory of an ANOVA test is to separate the total variation in the data into a portion due to
random error (sum of squares for error [SSE]) and portions due to the treatment (total sum of
squares [SST]). Table 6 shows the typical form of a one-way ANOVA table. If the calculated F
value (= treatment mean square [MST] / error mean square [MSE)) is significantly larger than F
(k-1, N-k), the null hypothesis is rejected. F (k-1, N-k) is the critical value when the means of
each group are equal. Most statistic software will also provide the corresponding p-value for
researchers making their decisions in different confidence intervals.

Table 6. The typical form of a one-way ANOVA table

Source SS DF MS F P(>F)
Treatments SST k-1 SST / (k-1) MST/MSE

Error SSE | N-k | SSE/(N-k)

Total (corrected) SS N-1

Notes: SS = sum of squares, DF = degrees of freedom, MS = mean of sum
of squares, F = F-distribution (because the test statistic is the ratio
of two scaled sums of squares, each of which follows a scaled chi-
squared distribution), P(>F) = the p-value when the F value (=
MST/MSE) is larger than F (k-1, N-k), k = number of treatments,
and N = total number of cases.

There are three data assumptions for applying the ANOVA method:

1. Independence: The study data are independently, identically, and normally distributed.
Normality: The distributions of the data or the residuals are normal. This assumption is
true when the sample size is larger than 30.

3. Homogeneity of variability: Equality of variances — the variance of data between groups
— should be the same.

If the above conditions do not exist, the ANOVA results may not be reliable. However, if the
sample size of each group is similar, one can usually ignore independence and homogeneity
problems. Or statisticians may transform data (such as into the logarithmic form) to satisfy these
assumptions of the ANOVA.

Based on the existing sign dataset, the research team focused on three digital sign characteristics:
color (single color or multi-color), sign dimension (small, medium, or large), and business type
(restaurants, pharmacies and retail stores, hotels, gas stations, auto shops, or others). The
definitions of sign dimension level are based on the balance principle (making the sample size of
each group equal). Figure 8 shows the distribution of signs as a function of different dimensions,
and the research team defined signs with an area less than 10 ft* as small signs. The medium sign
size had an area of at least 10 ft* but no more than 15 ft*, and the large sign size had an area
greater than 15 ft*. The sign size represents the area of the electronic display, not the overall size
of the complete sign. It was estimated from the Street View image in Google Maps and may not
be an accurate assessment of the sign dimensions.
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Figure 8. The histogram of digital signs for each sign dimension

Using the ANOVA method to analyze crash data related to specific design characteristics of the
sign led to the conclusion that there is no statistically significant difference among the population
means of the safety effectiveness index. The following descriptions provide more detail for each
of the digital sign characteristics:

e Color: According to images obtained from the Street View feature of Google Maps, 89
signs are single-color signs, and 37 signs are multi-colored signs. Table 7 shows the
ANOVA results. The test statistic (F value) is 2.07, and its p-value is 0.1527. Because the
probability is larger than the critical value (0.05 for 95 percent confidence interval), the
null hypothesis of equal population means cannot be rejected. In other words, the
ANOVA table shows no significant difference between the mean of safety index
(Bgp = crash mean in the before period/crash mean in the after period) among signs
having a single color or multiple colors.

Table 7. Analysis of variance table (color)
Df | Sum Sq | Mean Sq | F value | Pr(>F)

Group 1 4.464 4.4640 2.0704 | 0.1527
Residuals | 124 | 267.352 | 2.1561

e Sign dimensions: In the final sign dataset, 36 signs have a sign area less than 10 ft%, 56
signs have a sign area 10—15 ft, and 34 signs have a sign area greater than 15 ft*. In
Table 8, the F value is 0.7767, and its p-value is 0.4622. Because the probability is larger
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than the critical value (0.05 for 95 percent confidence interval), the null hypothesis of
equal population means cannot be rejected. Accordingly, researchers conclude that there
is no (statistically) significant difference among the population means.

Table 8. Analysis of variance table (sign dimension)
Df | Sum Sq | Mean Sq | F value | Pr(>F)

Group 2 3.39 1.6950 0.7767 | 0.4622
Residuals | 123 | 268.43 2.1823

e Business type: In the final sign dataset, 7 signs are for restaurants, 18 for pharmacies and
retail stores, 3 for hotels, 3 for gas stations, 7 for auto shops, and 84 for other business
types. Based on Table 9, the F value is 0.5401, and its p-value is 0.7455. As with the
above types, the null hypothesis of equal population means cannot be rejected because
the p-value is much larger than the critical value (0.05). The sample size of some
business type groups is less than 30, so the research team combined all categories of
business types with less than 20 samples into one large group, the “other” category. The
resulting ANOVA analysis (Table 10) provides similar results: there is no significant
difference among the population means.

Table 9. Analysis of variance table (six business types)
Df Sum Sq Mean Sq F value | Pr(>F)

Group 5 5.983 1.1966 0.5401 0.7455
Residuals 120 | 265.833 2.2153

Table 10. Analysis of variance table (two business types)
Df Sum Sq | MeanSq | Fvalue | Pr(>F)

Group 1 0.728 0.7289 0.333 0.5649
Residuals 123 271.088 2.18619

IMPACT OF SIGN HOLD TIME

As an additional effort for this research effort, the research team worked with members of the
SFI advisory panel to identify the potential impact of hold time on the relationship between on-
premise digital signs and traffic safety. One of the advantages of digital signs is the ability to
change the displayed message. The minimum length of time that a message must be displayed is
often an element of local sign codes because some believe that frequent changing of sign
messages can increase driver distraction and lead to increased crashes. Because the researchers
were working with a large number of individual sites and crash records for the after period that
spanned two years, it was not possible within the available resources of this project to determine
what message(s) were displayed at the time of a crash or the hold time used at a particular site at
the time of a crash.

As a surrogate for including hold times as part of the individual site characteristics, the research
team acquired information for the hold time regulations in the jurisdictions where the signs were
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located. The 135 sign sites were located in 108 jurisdictions. A member of the SFI advisory
panel contacted these jurisdictions and was able to identify hold time regulations for 66 of them.
The hold time regulations of these 66 jurisdictions are summarized in Table 11. Input from the
advisory panel indicated that when a jurisdiction has no statutory language regarding digital sign
hold times, it most often means that sign users are able to program their sign to change messages
as often as they see fit. In some cases, it could mean that the state standard for digital signs
applies, which ranges from 6 to 8 seconds in the four states included in the analysis.

Table 11. Summary of sign hold times

Minimum Hold Time Number of Jurisdictions
2-6 seconds 14
7-10 seconds 12
20 seconds 3
1-60 minutes 2
24 hours 2
Variance required* 4
No specific restriction 29
Total 66

* Hold times were established by variance on a case-by-case basis.
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CHAPTER 6:
SUMMARY AND CONCLUSIONS

While there have been significant amounts of research devoted to the safety impacts of geometric
design features and other aspects of the publicly owned transportation infrastructure, the same
cannot be said about research on the safety impacts of privately owned signs that are directed to
users of public roads. This research effort focused on addressing the safety impacts of on-
premise digital signs. Previous research by others has documented the safety effects of on- and
off-premise digital signs and their potential influence on crash risk to some extent. However, the
results of recent crash studies are not consistent, and most studies have some important
weaknesses, such as neglecting biases related to the regression-to-the-mean effects, low
statistical power, and analysis results based on erroneous assumptions. In addition, Molino et al.
(2009) report that the results from these studies are not comparable because of their different
study methods, statistical powers, and cares of execution, which affected the quality of the
research.

The research effort described in this report examined the safety impacts of on-premise digital
signs using a large sample size of data and advanced statistical methods that provide more
accurate results than previous studies. With the help of sign data provided by sign-manufacturing
companies and crash data obtained from the Federal Highway Administration Highway Safety
Information System, the research team obtained extensive datasets for signs and crashes in four
states. The research team began the safety analysis with 1,120 potential study sites, but only 135
sites were usable due to limitations related to the individual signs or the related crash data.
Although the yield of usable data was only 11.3 percent, the final sample size of 135 sites was
much higher than the sample size of other published papers and reports related to on- and oft-
premise signs, indicating the results of this research are more robust and accurate.

The research team used the empirical Bayes (EB) statistical analysis method, which is the
method recommended in the Highway Safety Manual, to conduct the safety analysis described in
this report. The Highway Safety Manual is a recently published document that is recognized
within the transportation profession as the authoritative document for analyzing the safety
impacts of various transportation improvements or treatments. The EB analysis procedure uses a
before-after approach, with the before and after values modified to address local safety
characteristics, regression to the mean, and other factors. The EB method reports the safety
impacts through the use of a safety index indicator (represented by 0). A value greater than 1
indicates an increase in crashes, and a value less than 1 indicates a decrease in crashes from the
before to the after period. However, for the results to be statistically significant, the 0 value must
be outside the limits of the 95 percentile confidence interval.

For the entire sample size of 135 sites, the results from the EB method show that there is no
statistically significant change in crash frequency associated with installing on-premise digital
signs because the safety effectiveness index (0) is determined to be 1.00, and the 95 percent
confidence interval is equal to 0.93 to 1.07 (which includes 1.00, indicating no statistically
significant change). The research team also conducted the analysis for each of the four individual
states and obtained the same results: there are no statistically significant safety impacts from
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installing on-premise digital signs. In addition, the researchers analyzed the safety impacts
related to both single- and multi-vehicle crashes. The results for these analyses were also the
same: there is no statistically significant increase in crashes associated with the installation of on-
premise digital signs. Chapter 5 includes plots that illustrate the safety index values and
confidence intervals for all of these results. As a final analysis, the research team performed an
ANOVA to evaluate whether the means of the safety index (0) varied as a function of sign
factors (color, size, and type of business). The color analysis evaluated whether there was a
difference in the means of the safety index for single- and multi-colored signs, and the results did
not find a difference. The size analysis divided the signs in the study into three categories

(<10 ft?, 1015 ft*, and >15 ft*), and the results did not find a difference. Signs were also
categorized by the type of business (restaurants, pharmacies and retail stores, hotels, gas stations,
auto shops, and others). Once again, there were no differences in the means. Overall, the
ANOVA analysis did not identify any factor that led to an increase or decrease in traffic safety
for the subcategories evaluated in the ANOVA.

Based on the analysis performed for this research effort, the authors are able to conclude that

there is no statistically significant evidence that the installation of on-premise signs at the
locations evaluated in this research led to an increase in crashes.
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APPENDIX A:

STEP-BY-STEP INSTRUCTIONS FOR STUDENTS TO RECORD SIGN DATA

Open one SFI sign dataset (e.g., “Washington 2006-2007.x1Is’). This dataset includes
about 150 signs located in the state of Washington during 2006—2007.

Input the address information (such as Primary Street Address, City, ZIP Code, County
Name, and State) of each sign in Google Maps and use the Street View function to
identify the target signs. Please see this link,
http://maps.google.com/help/maps/starthere/index.html#streetview&utm campaign=en&
utm_medium=et&utm_source=en-et-na-us-gns-svn&utm_term=gallery, for a demo about
how to use the Street View. If you did not find any on-premise digital signs near this site,
please make a note in Table 12. Check the characteristics of each sign (including colors,
dimensions, and business types) and fill out Table 12. Then, use the “Print Screen” button
to copy each sign’s picture, and paste it in this document (such as Figure 9). The different
business types are classified as (1) Restaurant, (2) Pharmacy and Retail Store, (3) Hotel,
(4) Gas Station, (5) Auto Shop, and (6) Other.

Table 12. Example work table of site data collection procedure

Sign
ID

Google Maps Google Earth

Address Installation . Cplor Dimension |Business| County | Route | .. Mile- | Note
Date  |Picture|(Single/ . Distance
Multi.) (Estimated)| Type ID # post

79016

19330 N US |2006/9/15 |Fig2 |S 3ftx6ft |6 Mason (101 19.3 335.72
HIGHWAY (23)
101 Shelton
98584
Mason
County, WA

Then, use Google Earth to determine the county and route number, and to measure the
distance between the closet county boundaries and sign location along the route (recorded
in the distance column). The corresponding ID for county and route number is based on
the HSIS data manual (file name: guidebook WA[1].pdf). Then, estimate the milepost
value of the sign by the distance and the milepost of the route in the boundaries (based on
the HSIS road file, such as wa04road.xls). Take Figure 10; for example, the end mile
point of Highway 101 in the county boundary is 355.18, and the distance between the
sign and the county boundary is 19.3; so, the milepost of our sign is 335.72. Generally,
the milepost value increases from south to north and from west to east. However, the best
way to check it is to compare the value of the milepost of adjusted counties. For example,
the milepost of US 101 in Mason County is 313.96~355.18, and the milepost of US 101
in Thurston County (located south of Mason) is 355.18~365.56. So, it is known that the
mileposts increase from north to south in Mason County. The above variables will be
used in the R software to select target crashes from HSIS crash datasets.

Write down any questions or comments in the note column. Feel free to ask us if you
have any questions.
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APPENDIX B:
STATISTICAL SYMBOLS

The following statistical symbols are used throughout this report.

0 = the safety effectiveness, 0 < 8 < 1 (can be theoretically higher, but not in this study).
n = the sample size.

a = the dispersion parameter (of the negative binomial model).
t = the time period.

écs = the estimate of safety effectiveness by using the CS method.

D>

naive — the estimate of safety effectiveness by using the naive method.
é’CG = the estimate of safety effectiveness by using the control group method.
éEB = the estimate of safety effectiveness by using the EB method.

A = the estimated number of crashes for the treatment group in the after period.

7 = the estimated number of crashes for the treatment group in the before period.

v = the estimated number of crashes for the control group in the after period.

[ = the estimated number of crashes for the control group in the before period.

NiJT " Nijc1 = the observed responses for site i (T = treatment group and C = control group) and
year j (in the before period).

Nijc2 = the observed responses for site i (T = treatment group and C = control group) and
year j (in the after period).

M, = the expected responses for site i for the EB method,

NT

ij2°

M, = WX(AI) +(1—W)X(ZNU1)
=
1

~

W = the weight for sites for the EB method, W = —.
I+ A xa

/A\1 = the estimate for the average crash rate of all sites in the before period.

a = the estimate of the dispersion parameter (from the negative binomial model).
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